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Abstract 

We summarize progress in our analysis of proposed communication schemes for hypersonic ve- 

hicles in flight. Investigations into the electron-acoustic wave (EAW) communication scheme have 

yielded a dispersion analysis indicating that EAW modes can be generated and propagate in the 

plasma layer. Furthermore, we have demonstrated that these modes can be coupled to electro- 

magnetic waves at the plasma layer boundary for the assumption of a sharp density boundary. A 

detailed analysis of the wave transformation coefficients at this boundary layer is presented. We 

also discuss the results of ID particle-in-cell simulations of a plasma-filled cross-field diode. These 

simulations are intended to model some of the critical physical processes of the ReComm scheme 

for communications through the plasma sheath surrounding a hypersonic vehicle during re-entry. 

The ReComm scheme utilizes externally generated crossed electric and magnetic fields to induce 

charged-particle drifts. This spatially redistributes the plasma and enables propagation of electro- 

magnetic waves through the plasma layer. We demonstrate that the time required to significantly 

alter the plasma density profile in the diode corresponds roughly to the ambipolar diffusion time. 

When a voltage is applied, the plasma center-of-mass shifts from the center of the diode. But 

whether that shift is towards the cathode or anode depends sensitively on the relative mobility 

of the plasma ions and electrons. Finally, we summarize the derivation of an analytic model of 

whistler wave excitation by an external dipole antenna. In addition, a dispersion relation is derived 

to estimate the plasma heating in the sheath due to plasma waves excited by the antenna. 
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I.    INTRODUCTION 

Hypersonic vehicles traveling in the upper atmosphere at speeds greater than Mach 10 

(7,000 mph at 33 km altitude) generate plasma that disrupt or prevent communications over 

conventional radio-frequency channels. This phenomenon manifests itself most famously as 

the well-known communications "blackout" period during space vehicle reentry into the 

atmosphere [1-3], and has been studied (off and on) since the Gemini and Apollo space 

programs. For sustained hypersonic flight in the atmosphere, the communications blackout 

will persist for almost the entire Might. 

The plasma boundary layer is formed around a hypersonic vehicle in the bow shock and 

to some extent by the collision of neutral gas particles with material ablated from the surface 

of the hypersonic vehicle itself. In the shock, the air is heated to such a high temperature 

that ionizing collisions between neutral particles occur. Estimates of electron density, np 

(~ 1012 cm-3), temperature (~ 0.5 eV) and electron-neutral collision frequencies (2.5 x 109 

42.5 x 10u s_1) have been obtained for high-Mach-number reentry vehicles at altitudes 

between 100,000-150,000 ft (30-45 km) [4, 5]. The thickness of the plasma layer (defined as 

the region where the electron density exceeds ~ 109 cm-3) associated with these parameters 

is on the order of 6 cm, with 90% of the peak density out to a width of about 2 cm. The free 

electrons in the plasma layer attenuate radio-frequency (RF) waves both through reflection 

and resistive absorption, and generate RF noise. At sufficiently large antenna power levels, 

the RF itself can cause further ionization of the air to occur. 

Acceptably low attenuation of electromagnetic (EM) wave propagation in a collisionless 

plasma is limited to frequencies above the cutoff value fc = UJ^/2-K, where ujpe is the electron 

plasma frequency (see, for example, Ref. [6]). For np = 1012 cm-3, the fc ~ 10 GHz, which 



is at the high end of the radio wave frequency spectrum and well into the conventional 

microwave portion of the EM spectrum. In addition, this plasma cutoff frequency is above 

the spectrum allocated (in some cases by international treaty) for flight test and evaluation 

telemetry and above frequencies supported by existing infrastructure. We note that Global 

Positioning System signals are broadcast in the L-band region of the spectrum, and con- 

sequently are also heavily attenuated by the plasma sheath. As a result, communication 

approaches within the standard telemetry spectrum are inadequate for hypersonic vehicles 

using conventional techniques (see, for example, Refs. [6, 7]). 

A theoretical research program is underway to assess concepts for real-time telemetric 

communications through plasma boundary layers surrounding hypersonic vehicles in flight. 

This research includes detailed analytic analysis and computational modeling of several 

proposed communication schemes. In our previous report [8], we summarized our research 

progress on three such schemes: a nonlinear three-wave interaction technique [9-11], an 

electron-acoustic wave (EAW) propagation scheme, and a magnetic window scheme for EM 

wave propagation through a collisional plasma slab. Here we summarize recent progress 

in our analysis of the EAW communication scheme (Sec. II). In a separate report [12], 

we present updated 2D numerical simulations of the magnetic window scheme and new 

3D simulation results. These new simulations demonstrate the ability to model detailed, 

complex antenna structures which is an important aspect to all the communication schemes 

presently under analysis. 

In Sec. Ill, we present the results of ID particle-in-cell simulations of a plasma-filled cross- 

field diode. These simulations are intended to model some of the critical physical processes 

of the ReComm scheme for communications through the plasma sheath surrounding a hy- 

personic vehicle during re-entry. The ReComm scheme utilizes externally generated crossed 



electric and magnetic fields to induce charged-particle drifts. This spatially redistributes 

the plasma and enables propagation of electromagnetic waves through the plasma layer. We 

demonstrate that the time required to significantly alter the plasma density profile in the 

diode corresponds roughly to the ambipolar diffusion time. When a voltage is applied, the 

plasma center-of-mass shifts from the center of the diode. But whether that shift is towards 

the cathode or anode depends sensitively on the relative mobility of the plasma ions and 

electrons. 

In Sec. IV, we present analytic modeling of the whistler wave communication scheme. 

The impact of the antenna radiation field on the plasma sheath properties is assessed. A 

summary of our progress on the various communication schemes is given in Sec. V. 

II.    ELECTRON ACOUSTIC WAVE TRANSFORMATION 

One scheme for communication through a plasma sheath is based on the possibility of 

propagating EAWs with frequencies well below the local plasma frequency (~ 9 GHz) in a 

two-electron-temperature plasma. A small hot electron population is produced by injection 

of an energetic electron beam. Over a certain range of wavelengths, the hot-electron com- 

ponent of the plasma can short out the electric fields that produce plasma oscillations in 

the cold plasma, thereby reducing the frequency of these oscillations below the cold plasma 

frequency. It may be possible to excite these electrostatic oscillations with an antenna and 

have them couple to electromagnetic RF oscillations outside the sheath. Related research 

was carried out in the CHARGE 2B ionospheric rocket experiments [13-15]. For sustained 

hypersonic flight, a comprehensive analysis is required to estimate the feasibility of this 

concept. 



A.    EAW to EM Wave Transformation at the Sheath Boundary 

We use the hydrodynamic approximation to describe the transformation of an EAW into 

an EM wave at the plasma sheath boundary This transformation is essentially the conver- 

sion of longitudinal EAWs propagating inside the plasma layer into EM waves propagating 

in the atmosphere. 

We retain the two temperature plasma description, with the cold and hot electron tem- 

peratures denoted as Tc and T/j, respectively The total electron plasma density is the sum 

of the hot and cold electron components, Ne = nc + nh. Density perturbations under the 

influence of the wave fields are denoted as nc = UQC + Snc and n/, = n0h + Sn^, and electron 

velocity perturbations are denoted as Svc and Svh- We consider the transformation of an 

incident EAW with frequency 

i   v1/2 

uk = upc [ 1 + ^- j        , (1) 

propagating in the plasma layer into an EM wave propagating in air, 

uk = fc-£=. (2) 

[The notation used here follows Ref. [8]; e.g., uipc is the plasma frequency of the cold electrons 

and rjyh is the Debye radius of the hot electrons.] 

We assume that in the case of EAWs propagating in the plasma sheath, in the vicinity 

of the boundary there are two types of waves; EM waves with amplitude exponentially 

decreasing with increasing plasma density, and electrostatic EAWs propagating towards the 

boundary. In addition, we also take into account reflected EAWs and EM waves, propagating 



FIG. 1: Incident longitudinal and reflected EAWs (in blue with subscript s) and the transformed 
and reflected EM waves (in red with subscript t) of P-polarization (Ex, Ez, Hy). 

in the air (see Fig. 1). 

In order to derive equations for the transformation of EAWs at the boundary to P- 

polarized EM waves, we begin with Maxwell's equations: 

Vx£ = 
ldH_ 

(3) 

A     f±     IdE     lire,     _ 
V x H = -— [nocVic + n0hvih), 

c at        c 

divE = —47re (n\c + n^) 

(4) 

(5) 

The linearized equation of motion for the cold electrons can be written as 

dvlc e -, 1     -. 

ot m        mriQc (6) 



where vec is the cold electron-neutral collision frequency, and the (first-order) cold electron 

fluid pressure is expressed as 

VPic = 70mV£,Vnic, 

with 70 representing the adiabatic constant, and 

Vl = sjf^n. 

(Subscripts prefixed by "0" and "1" denote the usual zeroth and first order terms, respec- 

tively, in the linear expansion.) The linearized continuity equations for the cold electrons 

has the form 

~- + nocdivvic = 0. (7) 

Similarly for the hot electrons, the linearized equations of motion and continuity are 

d^h e-        1    - 
ST = E VPlft ~ "ehVih, (8) ot m        mn0c 

dnlh 

dt 
+ nohV • vlh = 0, (9) 

with 

VPi/, = JomVfhVnlh, 

and 

V-rh = VTh/m. 

Equations (4) - (9) can be used to describe both (a) the transformation of an incident 

EM wave into an EAW inside the plasma sheath as well as (b) the transformation of an 

9 



EAW incident on the plasma/air boundary into an EM wave. Here we focus on these 

transformations at a relatively sharp boundary of a plasma sheath. If L is the characteristic 

distance over which the plasma density is decreasing from some finite value to zero and 8 is 

the skin depth for EM field penetration into the plasma, then the condition for which the 

plasma boundary can be defined as sharp is simply 6 S> L. 

Applying the curl operator to Eq. (4) and using Eqs. (3) and (7), the following equation 

for the y-component of magnetic field in plasma can be obtained: 

(PHy      (to
2 2 

+ [^c-ki\Hy = 0, (10) 
dx2       \ c2 

where ktz is the transformed EM wave vector (note that ktz = kBX), penetrating into the 

plasma sheath and 

ec = l--f. (11) 

Taking into account that ec < 0, we see from Eq. (11) that the magnetic field associated 

with the penetrated EM wave will exponentially decrease as the wave propagates in the x 

direction. 

Now we can obtain expressions for the perturbed electron velocities V\c and v\h for use 

in Eq. (4). From Eqs. (6) and (7), it is straightforward to obtain the following expression: 

1 +      T^_vdiv 
UJ (to + ivec) 

Taking into account that for the cold plasma electrons: 

vic=-i-    ,   ^.    J. (12) 

E >     ,7oKrc   xVdiv£, (13) 
UJ{UJ + ivec) 

10 



we can rewrite Eq. (12) for V\c as 

tflc=-i-_i -E + i-      7oV%    2VdivE. 
m a; (u + ivec) m w (u + ii/ec) 

(11) 

Introducing the linear operator, L/,, 

^ = 1 + 
7o^„    _A) 

cj(cj + ii/e/l) 
(15) 

and noting that for the hot electrons the second term in (15) is larger than the first one, 

from Eqs. (8) and (9) we can obtain the following expression for the linearized speed of the 

hot electrons in the plasma sheath: 

LhVih = -i 
1 

muj{uj + ii/eh) 
1+       **&      A 

U) (u + iveh) 
loV•   ,„VV-E. (16) 

mu)(u + iveh) 

Now, applying the operator Lh to Eq. (4) and using Eqs. (14) and (16), we obtain the 

following equation: 

Vx (LHH) = .u) U) ph 

LU{LU + iveh) 
LhE - i <4h      7oV& 

c  uj{uj + iveh) 
rVdivE. (17) 

When applied to the transverse EM field, Lh ^ 1. Rewriting Eq. (3) as 

l tly         lKZhlx 
c   * ax 

(18) 

11 



Eq. (17) can be expressed as: 

7oV&     d2Ex     u 
c
C(UJ + iveh) dx2       c 

LO 
tr ~ 

ph 7oV&4    ) Ex 
LU (to + iveh)\ \       u{oj + iveh) 

=    1- 
c2 (to + ivehy 

ktz"yi 

U) ph 

CO (u + iVeh) 

loV2
h    d

2Ex 

(u + iueh) dx2 + 
uJ ph 

{to + iveh) 
er   UJ 

(UJ + weh) 
(20) 

_.,      loV-rhUph    dEx _      , 3Hy 

UJ {UJ + iveh)   ox dx 

The system of equations (10), (19) and (20) describes the transformation of an EAW incident 

onto the plasma/air interface from within the plasma into an EM wave. In addition, this 

same system of equations describes the transformation of EM wave incident from the air 

into EAW propagating inside the plasma sheath. 

B.     Solution Set 

Transformation of EAW waves on the sheath boundary can be described by the equations 

(10), (19), and (20). Solution of these equations can be presented in the form: 

H\y = 
UJ 

ckut 
etotGEiexp{-K'ltxx), (21) 

EXx = Ex exp {-iq\x) - GEX exp {-K'UXX) 

Eu = -Ei-exp(-iqix) + iG-r^-Ei exp (-K'UXX) , 
<7i k\tz 

H2y  = 
L) 

ck 
etotGE2exp(-K'ltxx), 

Izt 

(22) 

(23) 

(24) 

12 



Vacuum 
Plasma 

FIG. 2:  Incident longitudinal and reflected EAW waves (in blue with index s) and transformed 
and reflected electromagnetic waves (in red with index t) of P-polarization (Ex, Ez, Hy). 

E2x = E2exp(iqxx) - GE2exTp(-K'itxx), 

En = E2—exp(iqix) + iG--^E2exp{-K'Uxx). 
<7l K\tz 

(25) 

(26) 

In the solution set (21) - (26), the following notations are used (see Fig. 2): 

etot = 1 ~ 
U) i"' w ph 

Lu(u + ivec)     U>(UJ + iveh)' 
(27) 

the constant G is defined as: 

E\,2tx — GEizsx, (28) 

where for E\2 we have 

£1,2 — \E\ 2sx\ 

U) 
K \tx y \ec\ + sin2 6*3, 

(29) 

(30) 

13 



where 9Z is the angle of the transmitted EM wave with respect to the plasma-vacuum 

interface normal, and we make use of the conditions 

k\sz = htx = hsz = fatz = htz = - sin 03. (31) 
c 

Finally for q\ we have 

9i = |*i«|. (32) 

To find G we use the boundary condition for the speed of cold and hot electrons; that the 

normal component of hydrodynamic speed of hot and cold electrons is zero on the boundary: 

vhx(0) = 0,    Vcx(0) = 0. (33) 

This means that the electrons are elastically reflected from the boundary. Using the equa- 

tions of motion for the cold and hot electrons and the Poisson equation, we write the following 

condition for the normal component of the electric field on the plasma sheath boundary: 

6  ,.   a        1_ 
?2 c -div£ = -=^-Ex,    at x = 0, (34) 

ox Rj 

where for Ftp is 

1 1 1 
"B2" _ l2~ + Z2~- nD        ' Dc        ' Dh 

Boundary condition (31) allows us to determine the constant G, which connects E\xt with 

£• I .•<.)•• 

G=1 + ^A- (35) 
' Dh lecl 

11 



The boundary conditions for the magnetic field are 

Hly(0) = H2y(0) = H3y(0), (36) 

and the electric field are 

Eu(0) + E2z(0) = E3z(0). (37) 

Using Eqs. (21) - (26), we obtain the following expressions for the magnitudes of reflected 

EAW (E2) and transmitted EM waves (E3): 

,_,       Z\ — cos #3 .    . 
^2 =      a ^' 38 

cos 6*3 - Z2 

Ez=   .   nZ,VZ2   n^tatEi. (39) sin#3(z2 — cos#3) 

From the boundary conditions, the impedances Z\ and Z2 can be obtained: 

Eu(0) .CKUX  , u;sin203 

Hiy{0) uetot      cqiGetot 

E2z{0) .cn'itx  , wsin203 
Z2=  u   tt\\ = ~l + n ' 41 

H2y{0) uetot      cq2Getot 

Now the coefficient of transformation in amplitude of an electron acoustic wave inside a 

plasma sheath into an electromagnetic wave propagating in the air can be written as: 

El = (M  Kt\sin03  
Ei      Wi / [to/ {cqxG)) sin2 03 - Kt\ cos 03 + isj\ec\ + sin203' 

In the process of derivation of (42), we also assumed that vec <c u. 

15 



The power associated with the transformation of an EAW into an EM wave can be defined 

as the ratio of the normal component of the energy density flux of an EM wave: 

E2 

SEM = C-± COS 03 (43) 
47T 

to the normal component of the energy density flux of an EAW: 

S.LEAW = SEAW cosBi ~ SEAW, (44) 

and for SEAW we have 

SEAW = V9-^(^s)-^, (45) 

where Vg is the wave group velocity.   Here Es is the electrostatic field magnitude for the 

EAW and 

68=1 + ^ 
ksrDh        "2 

From (45) we obtain 

EAW     ksrDh ks 47r' 

Using Eqs. (44) and (46), the transformation coefficient WT'. 

12 
T*/       ic   VTh^pc\^tot\      1 cos03sin 03 
WT=16TT———-r-p)—9-5—7 79 •      (47) 

c  «V \ec\2 Q2r2
Dh[Lo/(cq1G)sm203-\etot\cos03}2 + (\ec\+sm203) 

To obtain (47), we also used: 

1 OJ
2 

W = fcV" = 1 - -$• (48) 

l(j 



Taking into account that cosflls ~ 1 and |etot| ~ |ec|, we can replace (47) by: 

11/       i«   i   \VTh^vc cos6^3sin26^3  
WT = lo7r ec — 5 . (49) 

c  «V, [u>/ (o/xG) sin2 03 - M cosfl3]   + (|ec| + sin2 6/3) 

In the next section we investigate the dependence of the transformation coefficient WT 

from the propagation angle #3 of an outgoing electromagnetic wave propagating outside the 

plasma sheath. 

C.     Numerical Evaluation of the Transmitted Power 

In the previous section, the angular dependence of the transformation coefficient WT 

of an EAW propagating inside a plasma sheath into an EM wave propagating outside the 

plasma sheath was obtained [Eq. (47)]. Taking into account that cosflls ~ 1 and |etot| ~ |ec|, 

Eq. (49) was obtained. In our analysis of this expression, we use the following notations: 

VTH Upc u)       VTH uPc 
d\  =  ,       «2 =  1       «3 =   = = a,\0L2, 

c ojph cqi        c  ooph 

<7i = \kux\ = kiscosOu ~ ku = 

Considering vec <§C to and veh <C u> for |etot|, we can simply write: 

etot   — n i- 

Now we can rewrite the expression for the transformation coefficient [Eq. (49)]in the form: 

M/       i«   i   i cos6^3sin26^3 
WT = 167r|ec| a\a2 j • (50) 

{a^G-1 sin2 03 - \etot\ cos03)   + (|ec| + sin2 03) 

17 
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FIG. 3: Dependence of the transformation coefficient from the propagation angle (angle between 
the direction of the EM wave propagation and the normal to a plasma sheath) of an outgoing EM 
wave. 

Equation (50) is numerically evaluated (see Appendix A) to plot the dependence of WT on 

the EM wave transmission angle 03. We find in Fig. 3 that the transformation coefficient 

is large for large propagation angles of the outgoing EM wave. The transmitted power is a 

maximum for propagation angles close to 7r/2 (EM waves propagating almost parallel to the 

plasma sheath boundary). This is different from the case of Langmuir wave transformation 

into an EM wave at the plasma boundary, where the transformation coefficient is large for 

small propagation angles of the outgoing EM wave. We note that the magnitudes of these 

transformation coefficients are comparable in both the Langmuir wave and EAW cases. 

III.     ID ANALYSIS OF THE RECOMM SCHEME 

We present the results of ID particle-in-cell (PIC) simulations of a plasma-filled cross- 

field diode using the LSP code[16]. These simulations are intended to model the ReComm 

is 



scheme[17] for communications through the plasma sheath surrounding a hypersonic vehicle 

during re-entry. As is well known, an electromagnetic wave at angular frequency u) can 

only propagate through a thick collisionless plasma with a density low enough so that the 

plasma frequency UJP oc y/n does not exceed u>. In certain altitude ranges the density in the 

shock induced plasma layer surrounding hypersonic vehicles is high enough to attenuate RF 

signals in the L band (/ ~ 1 — 3 GHz) which is used for telemetry and evaluation (T&E). 

A simplified picture of the ReComm scheme can be seen in Fig. 4. The antenna aperture 

is placed in between a pair of biased electrodes. An electromagnet provides a magnetic 

held normal to the antenna aperture throughout the region between the electrodes. We 

consider in this report the "plasma-optic" regime described by Keidar et al. [18] in which 

electrons are magnetized and ions are unmagnetized. The separation distance between the 

plates, L, is assumed to be large compared to the electron Larmor radius, but small with 

respect to the ion Larmor radius. In this case, if E is the electrostatic held between the 

electrodes, the electrons are line-tied and can only E x B drift parallel to the electrodes. 

In principle [18, 19], this prevents the electrons from screening out the electric held in 

the bulk of the plasma between the electrodes. The ions, being unmagnetized, are then 

accelerated in the unscreened electric held. This simple description assumes that electrons 

are collisionless. If there is a finite electron-ion and/or electron-neutral collision frequency, 

the electrons can diffuse across held lines. Including both ion and electron collisionality in a 

ID fluid theory analysis, Keidar et al. argue that a steady-state spatial distribution results 

in which the plasma density is reduced near the anode side. The amount of density reduction 

will be a function of the plasma properties, electrode voltage, and magnetic held strength. 

The aperture of the antenna used for communications would then be placed directly below 

the reduced density region, where the plasma frequency will be lower.   A communication 

1!) 



FIG. 4: ReComm communication through plasma layer using applied electric and magnetic fields. 
Adapted from Ref. [17]. 

frequency of 1 GHz corresponds to a free-space wavelength of 30 cm. The antenna aperture 

will be on the order of the wavelength, which means, as a rough estimate, we can assume 

that the electrode separation L must be on the order of a meter. 

In this report we describe the results of ID simulations of cross-field parallel-plate simula- 

tions in the plasma-optic regime. We consider only the issue of the temporal evolution of the 

plasma density in the region between the electrodes due to the applied voltage and magnetic 

field. The details of electromagnetic wave propagation through the finite-thickness plasma 

sheath are not considered. 2D and 3D effects are neglected for the present. In Sec. Ill A 

we describe results from a baseline ReComm simulation using parameters believed to be 

consistent with those in the radio blackout regime. The simulation results suggest that the 

20 



Plate separation L (cm) 1.0 
Applied voltage V{V) 100 
Applied magnetic field B(G) 2000 
Initial plasma density n (cm-3) 1011 

Initial Electron temperature Te (eV) 10.0 
Initial Ion temperature Tt (eV) 0.1 
Ion-neutral collision frequency Vin (ns"1) 0.066 
Electron-neutral collision frequency Ven (IIS-1) 0.329 

TABLE I: Physical parameters for the baseline ID ReComm simulation. A spatially uniform singly 
ionized Ar plasma is placed between plate electrodes. Results from the simulation are shown in 
Fig. 5. 

system behaves roughly like an ambipolar diffusion process, and that the temporal evolution 

of the plasma occurs on corresponding time scales. In Sec. Ill B we describe the results of 

a series of parametric studies in which diode length, voltage, and plasma collisionality are 

varied from the baseline simulation values. 

A.     ID Simulations 

The simulations consist of a ID grid with conductors at the boundaries. A constant 

voltage difference (after a short temporal ramp) of V is applied between the cathode (x = 0) 

and anode (x = L). Table I shows the physical parameters used in what we will refer to as 

the "baseline" ReComm simulation. In this section we will discuss results from this single 

baseline simulation. Results from a series of parametric studies, in which various parameters 

are varied from the baseline values, will be discussed in the following section. 

An initially-uniform singly-ionized Ar plasma is placed between the plates. The plasma 

density of 1011 cm-3 corresponds to an electron plasma frequency of ujpe ~ 20 GHz which 

is much larger than the L-band frequencies available for T&E purposes.  We assume that 
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the plasma is initially at rest with respect to the electrodes. That is, we assume that 

plasma physics phenomena of interest occur on time scales short compared to the ratio of 

the plate separation and the hypersonic flow velocity. We will consider the validity of this 

assumption later in the report. Ion-neutral and electron-neutral collisions are included in 

the PIC simulations by a Monte-Carlo collision model which has been described in detail 

elsewhere[20-22]. For simplicity we have assumed a constant ion-neutral (vin) and electron- 

neutral (uen) collision frequency (the collision frequency should, of course, in general be a 

function of the particle energy). Ionization and other more complicated gas chemistry effects 

are neglected for the present. For this reason, it is not very significant that we have replaced 

the N2 and O2 molecular ions species which comprise the bulk of an air plasma with Ar ions, 

which are only slightly heavier. The electron-collision frequency value used in the baseline 

simulation corresponds to a value of uen ~ 0.02u>pe, which is in accord with estimates of the 

value in the hypersonic plasma sheath [6, 12]. Since we have not found any experimental 

data or estimates for the ion-neutral collision frequency, we have chosen to set vin = ujpi, 

where cuPi is the ion plasma frequency. We note that a collision frequency of this order was 

found to damp ion-acoustic waves driven by sheath oscillations near the cathode and anode 

surfaces in initial simulations with negligible electron collisionality. 

For these initial ID simulations we wanted to attempt to resolve electron time and length 

scales while also allowing the simulations to run out long enough to observe ion dynamics. 

For this reason we began with a relatively small plate separation value of L = 1 cm. If we 

estimate the electric field in the gap by V/L and apply a 2000 G magnetic held as shown 

in Table I, the E x B drift velocity is vD ~ 5 x 104 m/s, which is about 10 times larger 

than the ion thermal velocity vti and 10 times smaller than the electron thermal velocity vte 
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(vu < VQ < vte)- For each plasma species s (= e or i) we define the Larmor radius as 

max \vn, vts\ rLs = L^Jfi, (51) 
U>r<, 

where LOCS is the cyclotron frequency of species s. We find that for the parameters in the 

table rLe ~ 0.04 cm and rLi ~ 10 cm, so these parameters are seen to be in the plasma-optic 

regime for a plate separation of 1 cm. We note that for this field value the electrons will 

still make many cyclotron orbits in between collisions, as uen/toce ~ 0.01. By contrast the 

ions are in the opposite regime: Vin/^d ~ 100. 

By choosing a plate separation of 1 cm, we can choose a cell size of Ax = 0.04 cm, 

which is on the order of the electron cyclotron radius, without requiring a prohibitively 

large number of computational grid cells. Several hundred plasma particles per cell were 

used in these simulations to provide a good statistical representation of the electron and 

ion energy distribution functions. Macro particles which strike the conducting boundaries 

are removed from the simulation without replacement. A time step of At = 0.025 ns gives 

uceAt ~ 2tupeAt ~ 0.9, ensuring numerical stability. Simulations with this time step value 

agree well with simulations at smaller time step values, however, a significantly larger time 

step would require the use of implicit algorithms (Ref. [23] describes a new algorithm which 

allows numerically stable simultaneous under-resolution of cup and u>c). This would probably 

be required for larger scale simulations (i.e., 2D) than those presented here. The shortest 

ion timescale is given by u>~1 ~ 15 ns, so the simulations must be run for many time steps 

to follow the ion dynamics. 

Figure 5 shows plots of ion density (top) and potential (bottom) across the anode-cathode 

gap from the baseline simulation at several time values.   At t = 50 ns (a few ion plasma 
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periods), the ion density is uniform except at the electrode surfaces where the usual Debye 

sheaths have been established. The potential profile at 50 ns shows that electric held across 

the bulk of the plasma is fairly constant and ~ V/L. Locally, near the anode and cathode 

the potential decreases as the surface is approached, so the electrons are held back by local 

sheath electric fields. In general the sheath electric fields adjust themselves to repel the 

more mobile species. In this way quasi-neutrality can be maintained in the plasma. The 

potential drops near the conducting surfaces are of the order of the electron temperature. 

As time increases, the ion density profile slowly evolves to a roughly sinusoidal shape, 

although the position of maximum ion density shifts towards the cathode in this case. So 

there is a shifting of the center-of-mass of the plasma towards the cathode side. However, 

significant changes in the ion distribution occur only on time scales of ~ 10 //s. This requires 

the simulation to be runs for ~ 106 time steps. At these much later times there is no longer 

a (roughly) constant electric held in the bulk plasma. There is a fairly small electric held 

on the cathode side of the simulation with a larger electric held (> V/L) near the anode. 

We note that, other than the slight skewing of the density distribution toward the cathode, 

the general temporal behavior resembles that of a simple ID ambipolar diffusion problem 

between parallel plates without an applied voltage. 

This situation is discussed at some length in Ref. [24]. In Appendix B we extend the 

analysis of Ref. [24] to include the effects of an applied voltage. In the theory outlined in 

Appendix B the total plasma number density is assumed to decrease exponentially with a 

time constant of r for the lowest order diffusion mode. We show in the following section, 

that this is approximately the case for the simulations presented in this report. For given 

geometry and plasma properties, the time constant r can be calculated as a function of 

the three voltage scales, the applied voltage V, the ambipolar potential Va [Eqs. (B5) and 
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FIG. 5: Snapshots of ion density (top) and potential (bottom) as a function of x at several times 
for the baseline ID ReComm simulation with parameters given in Table I. 

(B7)], and VM, the potential difference between the center of the diode and the cathode 

[Eq. (B13)]. The applied voltage V is, of course, a known input parameter. The ambipolar 

potential Va is uniquely determined by the bulk plasma properties and is assumed to be 
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constant in the simple diffusion theory, and so can in principal be calculated from the initial 

conditions of the plasma. But the mid-potential VM cannot be determined from a quasi- 

neutral diffusion theory and depends on the details of sheath physics at electrode surfaces. 

In the usual treatment of ambipolar diffusion it is approximated that |VM/V^| 3> 1 (this is 

equivalent to the statement that the plasma density at the electrodes is vanishingly small 

at the electrodes), the timescale r is given approximately by 

LV I 
•' V K- (52) 

where Da is the ambipolar diffusion coefficient defined by Eqs. (B6) and (B7) [see Appendix 

A]. If we calculate r using the parameters in Table I, we obtain r ~ 50/^s. This simple 

estimate yields a timescale ~ 10 /is, which is in rough accord with the simulation results. 

Again using the parameters of the table, we can also estimate Va ~ —5.6 eV. The analysis 

in Appendix B demonstrates that when an applied voltage is present and Va < 0 (meaning 

that the electrons are more mobile), the center of mass of the density distribution should 

shift towards the cathode. This is also observed in the baseline simulation (Fig. 5). 

We note that the diffusion theory outlined in Appendix B makes the assumption that 

both Va and Da are independent of both position and time. This implies that electron and 

ion temperatures and collision frequencies are constant as well. We consider now the time 

variation of the temperature. Figure 6 shows the electron and ion temperature (in units of 

volts) as well as VM and Va (calculated by using instantaneous values of temperature) as a 

function of time. We note that the temperature histories shown here represent a measure of 

velocity spread over the entire simulation space. Any spatial variations in temperature are 

averaged out in this process. 
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FIG. 6: Spatially averaged electron and ion temperatures and voltage scales as a function of t for 
the baseline ID ReComm simulation with parameters given in Table I. The ambipolar voltage scale 
Va is defined by Eq. (B5), and VM is the potential difference between the center and the cathode 
[Eq. (B13)]. 

From Eq. (B8) we see that Va is a linear combination of Te and Tj (for fixed magnetic field 

and collision frequencies). Note that Va can be positive or negative depending on the relative 

mobility of ions and electrons. The simple diffusion theory outlined in the appendix, assumes 

that both Va and the diffusion coefficient Da are constant in space and time. This implies 

that plasma temperatures and collision frequencies are constant. While collision frequencies 

are fixed by the code, we see from Fig. 6 that the average simulation temperatures exhibit 

some heating until about 10 //s, after which they level off. We restrict our consideration to 

times greater than 10 us and neglect the time dependence. 

When using the initial temperatures, we find that Va ~ —5.6 eV. If we use instead the 

asymptotic temperatures, Te ~ 15 eV and T, ~ 6 eV, the ambipolar potential changes only 

slightly Va ~ —6 eV. From the simulation we have an asymptotic value of VM ~ Va.  As 
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shown in Appendix B, for |V/\4| 3> 1, a physical solution to the diffusion equation requires 

that Vm/Va < ln(2). Prom Fig. 6, this clearly not the case. 

This apparent contradiction can be explained as follows. We again emphasize that in 

Fig. 6 Va is calculated by using spatially averaged values of the species temperatures. Since 

the electric fields are not uniform across the gap, there is actually an x variation in tem- 

perature due to non-uniform Joule heating. This can be seen in Fig. 7, where the bottom 

plot shows the electron and ion temperatures (in units of volts) as a function of x at t = 20 

/xs. We see that electrons are heated fairly uniformly across the gap, but ions are heated 

preferentially on the anode side, where the electric field is largest. We have also plotted 

Va, calculated by Eq. (B6) using the local values of temperature, as a function of x. The 

spatial variation in Va (and Da) implies that the system no longer satisfies a simple diffusion 

equation. 

The upper plot of Fig. 7 shows both the electron and ion density distributions at t = 10 

//s. The data, which come from an instantaneous snapshot, are somewhat noisy. But it is 

clear that there is a significant charge imbalance occurring in a region which extends from 

the anode about 2 mm into the bulk plasma. This is therefore a large region (much larger 

than a Debye length) where the assumption of charge neutrality does not hold. In this same 

region Va is positive, which implies that, at least locally, the ions are more mobile than the 

electrons. From ambipolar theory this would predict an ambipolar field in this region which 

would hold back the electrons from the anode, which is clearly not the case (as seen from 

the potential plot). But the large electric field is not ambipolar, since there is a significant 

charge imbalance. Alternately, in this region electron and ion fluxes are not nearly equal. 

This flux imbalance is required to draw current from the cathode to the anode. 

As discussed in Appendix B, the simple diffusion theory also predicts a constant ion 
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FIG. 7: Results from the baseline simulation at t = 20 /xs. (Top) Ion and Electron density profiles. 
(Bottom) Ion and Electron temperature, Va, and the electrostatic potential 4> (all in units of volts) 
as a function of x. 

center-of-mass once the higher-order modes have decayed, although the density profiles in 

Fig. 5 exhibit a continuing drift of the center-of-mass at late times. This can also be explained 

by the fact that Va and Da are not spatially uniform.  In this case it is no longer possible 
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to exactly separate the variables x and t of the density function, as in done Eq. (B9). The 

combination of this effect and the breakdown of quasi-neutrality leads to a time dependence 

in the position of the plasma center-of-mass. This is seen more clearly in the simulation 

results presented in Sec. Ill B. 

We have demonstrated here that qualitatively our baseline ReComm simulation behaves 

as an ambipolar diffusion process, in which the density profile evolves on time scales con- 

sistent with diffusion theory. The density profile evolves to a roughly sinusoidal shape, in 

which the center-of-mass is shifted due to the applied voltage. The existence and sign of 

this shift can also be predicted by the simple diffusion theory. As we have demonstrated, 

however, there is significant Ohmic heating and large-scale charge separation present in the 

simulations, which preclude using the theory quantitatively. In the following sections we 

present the results of a series of parametric studies in which the input parameters of the 

ReComm simulation are varied systematically. 

B.     Parametric Studies 

In this section we describe the results of parametric studies in which certain physical 

parameters are varied from the baseline values of Table I. We begin by describing the 

results from a series of simulations in which the electrode separation L is varied. All other 

physical parameters remain unaltered from the values in the table. We pointed out in the 

previous section that on long time scales the time evolution of the plasma density distribution 

resembles an ambipolar diffusion process. The timescale for a standard ambipolar diffusion 

process {i.e., with no applied field) should scale as L?/Da. Figure 8 shows results for 

simulations with L = 0.5,1,1.5,2, 3, and 4 cm. As mentioned above, the ion Larmor radius 

for the present set of input plasma parameters and magnetic field is ~ 10 cm. Simulations 
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with larger plate separations would require a decrease of the magnetic held strength to 

remain in the plasma-optic regime. Since the cell size Ax has been maintained for all these 

simulations, runs at larger values of L are also more time consuming. The top plot shows the 

total simulation ion charge Q(t) [normalized by the initial charge value Q(0)] as a function of 

time. For all values of L, after a transient time, the total ion charge decreases exponentially. 

This is consistent with diffusion of the lowest order mode. 

In the diffusion model, when higher order diffusion modes have decayed away, Q(t) is 

proportional to the integral over x of n(x,t), as given by Eq. (B9) of Appendix B. So after 

the transient time, the total ion charge can be expressed as 

Q(t) oc e~t/Tf. (53) 

For each simulation, the timescale TJ is found numerically by fitting the results for Q{t). 

An alternate timescale can also be calculated from the first e-folding time of the total ion 

charge: 

Q(re)/Q(0) = e-1, (54) 

where Q(0) is the initial ion charge. Both TJ and re are plotted as a function of L (the 

anode-cathode gap spacing) in the bottom plot. For the smaller values of L both r values 

scale approximately as L2, but for L > 2 cm, the quadratic scaling falls off to something 

closer to a linear dependence. This can be explained by referring to ambipolar diffusion 

theory. As shown in Appendix B, the dimensionless parameter L2/Dar is a function of both 

V/Va and V\i/Va. Da and Va are functions only of the bulk plasma parameters, however, 

the mid potential VM, which cannot be determined by simple quasi-neutral fluid theory, is 

in general a function of L.  This L dependence, which can be seen in the bottom plot of 
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Fig. 9, breaks the simple scaling relation r ex L2. 

Figure 9 shows the ion density and potential for each simulation as a function of x/L at 

the time t = re. The density profiles have a nearly self-similar shape, except for a slight 

shifting of the ion center-of-mass back toward the center of the diode with increasing L. 

The potential profiles have qualitatively the same shape, but the mid potential VM increases 

somewhat with increasing L. We also note that for each run the mid potential VM is roughly 

constant in time after a transient time of order re. The same is also roughly true of the 

average electron and ion temperatures. 

Figure 10 shows ion (x)/L and xrms/L as a function of t/re for all the simulations with L 

varied. For all runs the ion center-of-mass is skewed towards the cathode. As noted in the 

previous section, for a given L, the center-of-mass drifts monotonically towards the cathode 

in time. At a fixed value of normalized time t/re the ion center-of-mass shifts back towards 

the center of the two plates as L is increased. So the skewing of the density distribution 

diminishes as L is increased (for a fixed magnetic field strength). The plot xrms/L shows 

that the "spread" in ion density is not a strong function of L. This can also be clearly seen 

in the top plot of Fig. 9. Note also that unlike the center-of-mass, the density spread does 

seem to asymptote for t > re. 

We now consider a series of runs for which only the applied voltage V is varied. All other 

simulation parameters are the same as in Table I, including the electrode plate separation 

which is fixed at 1 cm. The top plot of Fig. 11 shows results for normalized total ion charge 

as a function of time for runs with V = 0,50,100,200 V. Note that for the V = 0 case, 

which corresponds directly to the ambipolar diffusion problem considered in Ref. [24], the 

time dependence of the total charge is not purely exponential at late times. This is due to 

temperature gradients and temporal variations in both VM and the temperatures. 
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FIG. 8: Results from a series of ID ReComm simulations. The simulation parameters are the same 
as those given in Table I, except that the plate separation L is varied. (Top) Normalized total ion 
charge as a function of time for various values of L. (Bottom) Time scales TJ and re as a function 

of L. 
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FIG. 9: Results from a series of ID ReComm simulations. The simulation parameters are the 
same as those given in Table I, except that the plate separation L is varied. (Top) Normalized ion 
density at t = re as a function of x/L. (Bottom) Potential at t = re as a function of x/L. 

For each run, the values of r/ and re are calculated from the Q(t) data. Of course the 

value of TJ for V = 0 is a rough estimate by necessity. The inverse values of re and TJ are 

plotted as a function of V in the bottom plot of Fig. 11. For V = 50,100, and 200 V, Va < 0 
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FIG. 10: Results from a series of ID ReComm simulations. The simulation parameters are the 
same as those given in Table I, except that the plate separation L is varied. (Top) (x)/L as a 
function of t/re. (Bottom) xrms/L as a function of t/re. 

and V ~> \Va\. In this regime, the data suggests that r is roughly proportional l/V. That is, 

the plasma density can be moved around more quickly as the electrode voltage is increased. 

Figure 12 shows the ion density and potential for each simulation as a function of x at 
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FIG. 11: Results from a series of ID ReComm simulations. The simulation parameters are the 
same as those given in Table I, except that the plate voltage V is varied. (Top) Normalized total 
ion charge as a function of time for various values of V. (Bottom) Time scales ry and re as a 
function of V. 
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the time t = re. The density profiles again have a nearly self-similar shape, except for the 

shifting of the ion center-of-mass toward the plate for the runs with an applied voltage. 

With no applied voltage, the distribution is symmetric about the midpoint between the 

plates, as is expected by symmetry. If we neglect transients, the position dependence of the 

temperatures, as well as charge-separation effects, we can roughly estimate that Va ~ —2.5 V 

and VM ~ 10 V for the run with V = 0. For these parameters we can estimate [by solving 

Eq. (B18)] that r ~ 300 /is. This is in rough agreement with the measured value of Tf. For 

this case (V" = 0), we note that the mid-potential VM is of the order of Te/e which is a few 

times — Va. The diffusion theory of Ref. [24] predicts an infinite value of VM for a boundary 

condition with vanishing plasma density at the electrode surfaces. This does not actually 

occur as the assumption of quasi-neutrality breaks down near the electrodes and limits the 

magnitude of VM- Figure 13 shows the plasma center-of-mass (x) and spread xrms for each 

run as a function of t/re. The temporal drift of the center-of-mass is again evident, except, 

of course, for V = 0 case. 

In the next series of runs, the electron-neutral collision frequency uen is varied from its 

baseline value of bujpi. We have performed simulations for uen/^pi = 1,2,3.5,5, and 10. The 

calculated time constants re and r/ are plotted as a function of uen/L0pi. We note that with 

increasing electron collisionality, the time constants begin to level off. As uen is increased, the 

electrons become more and more mobile [for a magnetized plasma species where u)cs 3> van 

the diffusion coefficient and mobility both scale linearly with usn; see Eq. (B7)]. In the limit 

that the electrons become much more mobile than the ions, ambipolar diffusion becomes 

limited by ion mobility. For this reason r oc 1/Da asymptotes as seen in Fig. 14. 

Figure 15 shows the ion density and potential as a function of x at t = re for each of the 

simulations. We note first that for the smaller values of venju>vi, for which the electrons are 

37 



FIG. 12: Results from a series of ID ReComm simulations. The simulation parameters are the 
same as those given in Table I, except that the plate voltage V is varied. (Top) Normalized ion 
density at t = re as a function of x. (Bottom) Potential at t = re as a function of x. 

relatively less mobile, there large are regions near the cathode completely devoid of ions. 

Since the electron density is not negligible in this region, there is again a large electrode 

sheath where charge neutrality breaks down.  For these runs the potential plots show that 
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FIG. 13: Results from a series of ID ReComm simulations. The simulation parameters are the 
same those as given in Table I, except that the plate voltage V is varied. (Top) (x) as a function 
of t/re. (Bottom) xrms as a function of t/re. 

most of the potential is screened out in the region near the cathode, with only a small electric 

in the remainder of the gap. In the limit that the uen —• 0, the electrons are completely 

immobile, as they are line-tied and can only drift perpendicular to the electrodes.  In this 
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FIG. 14: Timescales TJ and re are plotted as a function of ven/u)pi. The simulation parameters 
are the same as those given in Table I, except that the electron-neutral collision frequency ven is 
varied. 

case, the potential is completely screened out in a region near the cathode from which ions 

are excluded. In the remainder of the gap there is no electric field and the ion density 

distribution remains unaltered. As the electron collision frequency is increased relative to 

the ions, the large cathode sheath eventually recedes. 

Figure 16 shows the ion density center-of-mass and spread as a function of t/re. Note 

that the center-of-mass shifts towards the anode for low electron collisionality, but shifts 

back towards the cathode when electron collisionality is increased. This agrees with the 

general rule, established Appendix B, that the direction of the shift of the center-of-mass 

is determined by the relative mobility of the two species. When the electrons are more 

mobile, the density shifts towards the cathode, and when the ions are more mobile the shift 

is towards the anode. 
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FIG. 15: Results from a series of ID ReComm simulations. The simulation parameters are the 
same as those given in Table I, except that the electron-neutral collision frequency i/en is varied. 
(Top) Normalized ion density at t = re as a function of x. (Bottom) Potential at t = re as a 

function of x. 
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where 

u2 
pe 

2   ~,2  • W - UJce 

e = 1     ^br- (58) 

and 

r?=l-4- (59) 

The Green's function for Eq. (57) is 

-2 [\eV\ (7
2z2 - rr2 - y2)]"1/2 , |7z| > y^ + F, 

(60) 
2z [|e7?| (7222 - a;2 - y2)]  1/2 ,    |7z| < y/x2 + y2, 

where 7
2 = — e/rj. 

For the charge density in an antenna defined as 

= ^ C08[K(LJX1)] 
c       sin(KL) 

we can obtain the following expression for the electrostatic potential of oscillations excited 

by the dipole antenna inside a plasma sheath: 

M A ViV - (-1- - 5)2 - »2 

The electrostatic potential dehned by Eq. (62) contains resonances surfaces where it has 

singularities. To find these surfaces and the type of electrostatic potential singularity on 

these surfaces, we define the function 

fi^,x,y,z) = j2z2-(x-^)2-y2. (63) 
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On the resonance surface, the electrostatic potential 4> a logarithmic singularity. This sin- 

gularity can be identified from the conditions 

f1{£,x,y,z) = 0, (64) 

df - =-2(x - 0 = 0. 
OH 

These conditions (64)-(65) define parts of the plane 

(65) 

72 = ±y, (66) 

with — L < x < L. Now f\ can be put into the form 

r i/- \ *- O  Ji[t^s, Xs,ys, Zs) 9    ,    [•/• 
fi((,x,y,z) = — (£ - xi8y + Sf, (67) 

where 

Xf     dfl 

X—x$ 

[x-xa)+—- 
dy 

y=y» 
(y-ys)+-^ {z-zs) = 2-yzs{z-zs)-2ys{y-ys). (68) 

z=za 

With Eq. (67), we can now write the following expression for the potential of the quasi- 

electrostatic whistler wave in the vicinity of the resonance surface: 

*. 
2Pl     f 

-1/2 

#. (69) 
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Carrying out the integration in Eq. (69) with 5f ^ 0, we find 

$1 = ~— In ( -6f I + constant. (70) 
V2M      V2 

From Eq. (70) it is clearly seen that when we are approaching the resonance surface and 

Sf —> 0, the potential of the quasi-electrostatic whistler wave experiences a logarithmic 

singularity. We can use Eq. (70) to find the electric field excited by an antenna in the 

vicinity of the resonance surface.  Introducing the coordinates along and perpendicular to 

the resonance surface, 

z + iy , iz-y 
X =    pr—-2    and    a = -===, (71) 

we can find that the strongest singularity is experienced by the electric field component 

directed the normal to the resonance surface.  The expression for the electric field has the 

following form, 

„ K      COS[K(L — 1x1)1       .  , ,    , 
Ea ~ 21A 

[ ). LUJsgn(x), (72) 
ujy/\er)\     Oy/1 +Y 

where 5 is the distance from the resonance surface. From the expression for the excited 

field, Eq. (72) indicates that the field experiences the 1/5 singularity in the vicinity of 

the resonance surface. One way to eliminate this singularity is to include the finite plasma 

temperature into the components of the dielectric tensor. Another possibility is to introduce 

the finite width of the dipole antenna. Equation (72) is valid at distances from the resonance 

surface that exceed the electron cyclotron radius or finite antenna width, whatever is larger. 

This analysis allows us to make an estimate of the wave field excited by the dipole antenna 

near the resonance surface. 

We can estimate the relative importance of different nonlinear processes in vicinity of 
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the plasma sheath. Using Eq. (72) as an estimate of the electric held excited by the dipole 

antenna inside the plasma sheath, we estimate the change in the plasma temperature due to 

the presence of the dipole antenna and, eventually, the level of the random noise produced, 

which can influence the quality of the communication channel. 

The oscillation frequency in the antenna is comparable to the lower hybrid resonance 

(LHR) frequency, Eq. (55), with characteristic wavelength obtained from (kc/upe)
2 » 1. 

For the electron density inside the sheath, ne ~ 1011 cm-3, this corresponds to the excited 

LOR oscillation wavelengths of the order of several centimeters (1 - 3 cm): 

2TTC 
A < A0 = ~ 10 cm. (73) 

For higher plasma densities, these exited wavelengths are smaller. The excited oscillations 

are known to occur inside the resonance cones oriented along the external magnetic held 

with an apex angle a ~ u)/ujce. 

The important parameter which characterizes the nonlinear processes in the vicinity of 

the antenna is the ratio of the electric held energy to the plasma pressure. For the values of 

this parameter inside the range: 

m E2 

M < W < L (74) 

The principal nonlinear effect is wave energy spectrum migration towards smaller wave- 

lengths and the collapse of the lower hybrid waves. This eventually results in resonance 

absorption of the wave energy by electrons and ions. When the excited hied is stronger and 

satishes the condition, 

E2 

> 1, (75) 
4imoT 
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strong nonlinear effects will be under way. The high radiation pressure will push the plasma 

out from the resonance cone region and the intersection of the particle trajectories due to the 

strong parametric instability will heat the plasma as a whole. Taking the current in antenna 

IA ~ 3 to 4 A, and using the plasma parameters and magnetic field strength presented 

above, we can use Eqs. (72) and (75) to show that the LOR oscillations in the vicinity of 

the antenna are unstable. 

B.    Plasma heating by quasi-electrostatic whistler waves in the vicinity of a VLF 

antenna inside a plasma sheath 

Assuming that the wavelength of the excited waves is on the order of the thickness of a 

plasma sheath, we examine the nonlinear interaction of the pump field, 

£oW = £0sin(u;o*), (76) 

with the plasma sheath. We are interested in the case when the waves excited by the antenna 

field is strong enough to satisfy condition (75), indicating the presence of strongly nonlinear 

coupling effects. The high radiation pressure will push out the plasma from the resonance 

cone region and the intersection of particle trajectories due to a strong parametric instability 

will heat the plasma as a whole. The instability of the plasma in the external electric and 

magnetic fields due to excitation of electrostatic oscillations near the lower hybrid resonance 

was investigated in a series of papers. The dispersion equation for parametric instability 

for the case when the oscillation speed of electrons in the external electric field is small in 

comparison with the thermal velocity, including the influence of Coulomb collisions, was 

derived by Andreev and Kirii [25].   Nonresonant decay neglecting the thermal motion of 
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particles, which is possible in a strong electric held of the pump wave when the energy of 

oscillations of electrons is sufficiently larger than their thermal energy, is examined by Porko- 

lab [26]. The experimental observation of parametric instability in the range of frequencies 

we are interested in and with the frequency of the pump wave UJQ < ZOJLH was presented 

by Bonizzoni et al. [27], where it was noticed that the excitation of a broad spectrum of 

non-resonant quasi-ion modes takes place. This is also the situation in our case, but now 

with a very strong pump wave, when the condition (75) is satisfied and forced oscillations 

with the growth rate 7 (for ua- « 7 < OJLH) are excited. Contrary to the case considered 

by Bonizzoni et al., we ignore the dispersive effects due to the thermal motion of plasma 

particles. 

C.     Dispersion Equation for Parametric Instability 

We present a brief derivation of a dispersion equation which describes the parametric 

excitation of lower oblique resonance oscillations in the presence of strong pump wave with 

the frequency u>0 > u)LH- We consider the pump held homogeneous in space, with temporal 

profile given by Eq. (76). As mentioned above, the wavelengths under consideration are 

short in comparison with the characteristic scale length of the inhomogeneity of the held of 

the pump wave. Taking into account that the wavelength of the quasi-electrostatic whistler 

waves excited by the VLF antenna are A ~ 2nc/uipe, giving k 3> ujpe/c. We analyze nonlinear 

excitation of quasi-electrostatic oscillations with the frequencies above the lower hybrid 

frequency due to a presence of the pump held produced by a VLF antenna. Below, ne and 

rii are the electron and ion density perturbations in the excited oscillations and Ve and Vt 

are the velocity perturbations. Furthermore, Sne and <5n, as well as SVe and SVi are the 

perturbations parametrically connected to the low frequency plasma dynamics. 
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For the electron speed at high frequency one can write: 

Vex = —Ey - -2-f ( ^ + ikUoe ) Ex, 
murp muL \ at see i' ""ce 

and 

Vey = —Ex - -^- (-| + iW0e ) Ev. (78) 
mujce mcoL \at ce 

In Eqs. (77) and (78), E = E(t)exp(ikf) is the parametrically excited held of oscillations. 

The electron speeds due to the pump wave are defined as 

Uoe = {E0yex - E0xey) sin (uQt). (79) 
TflWrp 

Now we can write expressions for the perturbations of the electron and ion densities due 

to the high frequency oscillations, using the continuity and Poisson equations, 

a\ + lWoe)  U* + l+X/uSne = T^jM (^ + lW°e '  Ul+ (80) 

c 1 ( d 

B0l+u;yuji\dt (— + ikUoe) I [E0± x Wn]z + ^ [E0zcos (u0t)] ^ j , 

d 
.at 

In Eq. (81), the expression 

— + ikUoi)  rii = UJ^ (ne - rii). (81) 

ft eE°        i    *\ 
MUJn 

is the oscillatory speed of the ions in the pump wave held. We now introduce the function 

T]e{t) = neexp (-ikaeJ , (82) 
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which corresponds to the electron charge density in the coordinate frame oscillating together 

with the electrons under the action of the pump field. In Eq. (82), for ae we have 

g                                                      e 
ae(t) --= -3-7—- (E0yex - E0xey) cos (ujQt) -j 2^02 sin (m0£) e2 

mujceuJo rriLOn 
(83) 

For the ions, we consider 

d 
di 

> kUot. 

After averaging over the fast time ~ u0 
i, we obtain 

1 + 
KL\ d2r]e k2      u? 2   ^2   __      Pf d2iii pe 

H[J  dt ul"VK~°' dt 
+ <li = ^Jo(h)^+u;2Jo(b3) 

K 1 ^0 .2 m+ (84) 

iJo(63)l wce <9<5n 
+ —E0cos(uJot)—-, £01 x V(5n 

d2 

where for 63 we have 

b,= 
Wi 2      r 

r/l^n V CO2 
En x k 

-12 

0  V   wce   L 
+  ^2 ^Oz ) 

and Jo is the zeroth-order Bessel function. 

Assuming the following characteristic frequency range 

(85) 

(86) 

kVTi < n < kzVTe, (87) 

where Vre and VTi are the electron and ion thermal velocities, we derive an expression for 

the low frequency ion acoustic oscillation. Assuming that the electrons are magnetized, the 
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low frequency electron oscillations can be described by the following equation of motion, 

9   *T e—ov = m 
dz 

Vj.e d8ne 

n0   dz 
+ m M Vez), (88) 

where the electron inertia term is omitted and 5"$! is the electrostatic potential of the para- 

metrically excited ion acoustic oscillations, and the angle brackets around the last term 

indicate averaging over the fast time scale LOQ
1
. The Poisson equation for $ is 

A* = 4Tre{8ne - 6nt), (89) 

where A is the Laplacian operator. 

Noting that the ion motion is unmagnetized, we obtain the following nonlinear differential 

equation for the density perturbations in the low frequency oscillations, 

d2      / - •        \2 

-— + \UoftcMa)   - V?A 
d8n 

~dz~ 
= n0^A((veA)vez), (90) 

where Vs is the sound speed. 

We can now use Eqs. (83), (84), and (88) to obtain the dispersion relation for the para- 

metric instability of the oblique resonance oscillations. First, using a standard procedure, we 

introduce two high frequency oscillations nonlinearly excited by the parametric instability 

with frequencies uj\ and UJ2 and a low frequency ion-acoustic perturbation at frequency S2, 

rjei = Aik exp i (kf — ui\t\ nn = BXk exp (kf-LOxty^ , 

Ve2 = ^2fcexp   -i (kr + u>2t\ L        ni2 = Bikexp   -i [kf + u2t\ 

(91) 

(92) 
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Sn = Snk exp i(kf-i1t\ (93) 

Next we substitute Eqs. (91)-(93) into Eqs. (84), (85), and (90) to obtain the disper- 

sion relation for simultaneous parametric excitation of two high frequency oscillations with 

frequencies given by 

<*>l,2 = 

U) /« 
1 + ^A4 

1 + 
U) 

=E [*-«*)]+ II 
]>c 

}• (94) 

and a low-frequency ion-acoustic frequency perturbation.   The dispersion relation has the 

following form 

tt2 + \k2aW, - k2V2 == -~^k-- J2(b) H^Q 4 m2 u2   LU\ 
k x E(] 

2      6 

S2 - it2 ' 
(95) 

where 6 = UIQ — u)\ and at = e2El/M2u)Q. 

It is necessary to point out that we are interested in the supersonic regime of parametric 

instability excitation, i.e. when 

it » W.. (96) 

u>0 — u\ < 0, Aperiodic Instability 

For S < 0, aperiodic instability takes place with a peak growth rate of 

7, max,aper ULH 
lM<j2{h)        El 
4muj2

e 47rmn0c
2 

1/3 

(97) 
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To determine the plasma temperature, we take into account that the effective electron 

collision frequency is of the order of the instability growth rate, veff ~ 7. In the vicinity of 

the heated plasma, condition (92) holds, and electrons drift along the magnetic field lines 

with sound speed Cs. Here the energy balance can be expressed as 

C.|(nT) = 
Up 
-f ) "eff 

E0 

s- (98) 

Substituting Eq. (97) into Eq. (98), the following estimate of an effective plasma temperature 

increase in the heated region can be obtained, 

r~(^m/f(^)"9(- 
2    \   8/9 

iirmnc2 

1 
(99) 

where L is the characteristic length of the heated region. 

UJ0 - ui\ > 0, Periodic Instability 

For S > 0, the temperature enhancement can be found analogously.   The dispersion 

relation now takes the form 

02 , 11,2 2   2 _ ..2W2 _ I JL^M: J_ T2(h) k X EQ 
2       5 

62-W 
(100) 

For S > 0, periodic instability occurs with a peak growth rate 

imax,per —      n   ^LH 2 
1 M^eJ2(fc)      El 

16 m uj2e  °     47rmn0c
2 

nl/3 

(101) 
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The peak growth rate of the parametric instability can be written in the form 

rsj (kaef
2ujLH, (102) 

where k ~ oJpe/c and ae is the displacement of an electron during the period of oscillations 

due to the drift in the wave field. 

After the same sequence of substitutions as in the case of periodic instability, the rise in 

plasma temperature is found to be 

luLHLs/MmA     (&) \
5/9 (M\2/9( 

2    x   8/9 
\ 

(103) 
4 J      \ ui^e)      \ m)      I iirmnc2 

Equations (99) and (103) are similar in form and predict similar temperature increases. 

As an example, we consider a current running in the antenna I0 ~ 1 A, the plasma density 

inside the sheath of 1011 cm-3, and external magnetic held of 1 T. We can estimate the held 

excited in the vicinity of the antenna to be E0 ~ 0.6 statvolt/cm. From Eq. (103) we can 

estimate the increase in plasma temperature due to the presence of the electric held excited 

by the antenna to be T ~ 7 eV. This rough estimate confirms that indeed the plasma in 

the vicinity of the VLF antenna can undergo a significant increase in temperature. This 

in turn can strongly influence the dielectric properties of the plasma and lead to enhanced 

disturbance of the received signals. 

V.    DISCUSSION AND SUMMARY 

The analysis of the conversion between EM and EAWs has been carried out for a sharp 

plasma boundary, and the results demonstrate reasonable power for the transmitted EM 

56 



waves. Our next step is to evaluate the feasibility of carrying out EM PIC simulations to 

model the generation and propagation of the EAWs and their transformation to EM waves 

at the plasma-vacuum interface. 

In a separate report [12], we expanded on our previous analysis of the magnetic win- 

dow analysis, adding revised 2D PIC simulations and new 3D PIC simulations of the wave 

propagating in a microwave horn and the interaction with a plasma layer. 

Our initial analysis of the ReComm scheme [18, 28, 29], where applied electric and mag- 

netic fields are used to open a frequency-space window for EM wave propagation through 

the plasma sheath, is presented in Sec. III. We have established that the ion distribution in 

the cross-field dipole (in the plasma-optic regime) is altered significantly only on diffusion 

time scales, for which r oc 1?/V, where 7 ~ 1 — 2. For plasma parameters believed to be 

consistent with the radio blackout regime, r is of the order of tens of /is, when L on the 

order of a few cm, and V is on the order of 100 V. For a realistic ReComm device allowing 

communication in the L-band of the radio spectrum, the diode length L would have to be 

scaled up to something on the order of 1 m. The magnitude of the applied voltage V is, 

of course, limited by practical considerations. The utility of the ReComm scheme depends 

upon being able to alter the plasma density profile on a timescale which is short compared 

to the time it takes the hypersonically flowing plasma to pass by the diode. So it question- 

able whether r can be made small enough to be useful in alleviating the blackout problem. 

As mentioned above, scaling the electrode separation up to lengths of 1 m would require 

dropping the magnetic field strength to remain in the plasma optic regime. This will alter 

the magnetization (ratio of cyclotron and collision frequencies) of the plasma species and 

could alter the scaling at longer diode lengths. 

We have shown that an ambipolar diffusion theory of the cross-field diode can describe 
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qualitatively the results of the simulation. However, plasma energy transport and charge 

separation effects, neglected in the theory, play an important role in determining the details 

of the plasma evolution. We have shown in our baseline simulation that ion temperatures 

can reach values of several tens of eV on long time scales t ~ r. This suggests that Ohmic 

heating of the plasma may lead to further ionization. To examine such effects would require 

replacing the simple Drude collision model used in this report with a more realistic chemistry 

model. Although it is probably more important to establish initially that r can be made 

small enough for practical use. 

Another concern is that the direction in which the plasma is shifted by the applied held 

depends sensitively on the relative mobility of the electrons and ions. To determine the 

relative mobility, it is necessary to have reliable information about the electron and ion 

temperatures and collision frequencies in the sheath surrounding the vehicle. Our survey of 

the literature suggests that the existence of this information is still incomplete. 

We note that the ReComm scheme is based only on altering the local plasma density in 

the vicinity of the antenna. To do this requires both an applied magnetic held and a high 

voltage diode. Moreover the effect may occur only on prohibitively long time scales. By 

contrast the magnetic window approach [30], which utilizes the magnet but does not require 

the diode, does not require any slow bulk motion of the plasma, but instead alters the 

transparency of the existing plasma to the RF signal. But the effectiveness of this alternate 

scheme depends strongly on the plasma collisionality [12], which, as noted above, is not well 

known. 

In all communication scenarios under consideration, the computational models will be 

extended to include, with increasing levels of complexity, realistic gas and plasma properties 

associated with hypersonic flight [31-33]. The goal of this integrated theoretical analysis is 
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the formulation of "operational-windows" in which physical constraints associated with each 

communication scheme can be parameterized. This analysis should significantly impact the 

down-select of these schemes for eventual deployment on hypersonic vehicles. 
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APPENDIX A: NUMERICAL CALCULATION OF THE TRANSFORMATION 

COEFFICIENT 

The following C computer program was developed by Dr. Vladimir Sotnikov to numeri- 

cally calculate the wave transformation coefficient. Electronic copies of the program can be 

obtained directly from Dr. Sotnikov (sotnikov(Q)unr.edu). 

1      /***************************************************/ 

/*             03-16-08 */ 

/* */ 

/* EAW_TR */ 

5  /* Electron Acoustic wave transformation */ 

/* */ 

/* this program creates the data array output */ 
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/* with 2 columns (theta3, WT). theta3 is the */ 

/* propagation angle of the outgoing EM wave. */ 

10  /* WT is the coefficient of transformation */ 

/* calculated as the ratio of energy fluxes */ 

/* (Pointing vectors) of outgoing EM wave to */ 

/* the incident EAW. Description is in reports */ 
/* for January, February and March 2008. */ 

15  /* */ 

/* */ 
/••••a**********************************************/ 

#include <iostream.h> 

20  #include <stdio.h> 

#include <math.h> 

mainO 

{ 
25 int  i; 

float Tec, Teh, nee, neh; 

float omega, omegapec, omegapeh; 

float omega2, omegapec2, omegapeh2; 

float c, pi, VTec, VTeh, lambdas; 

:$() float absepsc, absepstot, G; 

float rDec, rDec2, rDeh, rDeh2, RD, RD2; 

float al,a2,a3, invrDc2, invrDh2, delta, ql; 

float invrDec2, invrDeh2, invrDeh; 

35 

Tec =0.2; 

Teh = 20.0; 

nee = 0.86ell; 

neh = 0.05ell; 

40 pi = 3.14; 

c = 3el0; 

VTec = 4.19e7*sqrt(Tec); 

VTeh = 4.19e7*sqrt(Teh); 

omegapec = 5.64e4*sqrt(nec); 

45 omegapec2 = omegapec*omegapec; 

omega = 0.l*omegapec; 

omega2 = omega*omega; 

omegapeh = 5.64e4*sqrt(neh); 

omegapeh2 = omegapeh*omegapeh; 
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50 rDec = VTec/omegapec; 

rDeh = VTeh/omegapeh; 

rDeh2 =rDeh*rDeh; 

rDec2 = rDec*rDec; 

invrDeh = 1.0/rDeh; 

55 cout << invrDeh; 

invrDec2 = 1.0/rDec2; 

invrDeh2 = 1.0/rDeh2; 

RD2 = (rDec2*rDeh2)/(rDec2+rDeh2); 

//aa = sqrt(omegapec2/omega2); 

60 ql = invrDeh*(1.0/sqrt((omegapec2/omega2)-l.0)); 

//ql = invrDeh*(1.0/sqrt((omegapec2/omega2))) ; 

lambdas = (2*pi)/ql; 

//lambdas = 1.0; 

cout << lambdas; 

65 al = VTeh/c; 

a2 = omegapec/omegapeh; 

a3 = omega/(c*ql); 

absepsc = (omegapec2/omega2)-1.0; 

G = 1.0+(RD2/rDeh2)*(1.0/absepsc); 

70 absepstot = ((omegapec2+omegapeh2)/omega2) - 1.0; 

FILE *fw; 

fw = fopen("plasma_parameters.dat", "w"); 

7.r» 

80 

90 

fprintf(fw, "'/.f */,f */,f \n", omegapec, omegapeh, omega); 

fprintf(fw, "%f "/.f %f '/.f  \n", VTec, VTeh, absepstot, ql); 

fclose(fw); 

/********************************************/ 

float theta3[201]; 

85 float WT[201] 

float aa[201] 

float bb[201] 

float cc[201] 

float dd[201] 

delta =   (pi/2.0)/200.0  ; 
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95 FILE *fwl; 

fwl = fopenO'WT.dat",  "w"); 

100 

for  (  i = 0;   i <= 200;   i++ ) 

{ 

theta3[i]   = delta*i; 

aa[i]   = 

105      16.0*pi*absepsc*al*a2*cos(theta3[i])*sin(theta3[i])*sin(theta3[i]); 

bb[i]  = 

(a3/G)*sin(theta3[i])*sin(theta3[i])-absepstot*cos(theta3[i]); 

dd[i]  = bbti]*bb[i] ; 

cc[i]   = absepsc + sin(theta3[i])*sin(theta3[i]); 

110 WT[i]   = aa[i]/(dd[i]+cc[i])   ; 

//WT[i]   =   (16.0*pi*absepsc*al*a2*cos(theta3[i])*sin(theta3[i])*sin(theta3[i]))/ 

// 

(((a3/G)*sin(theta3 [i])*sin(theta3 [i])-absepstot*cos(theta3[i]))* 

115      // ((a3/G)*sin(theta3[i])*sin(theta3[i])-absepstot*cos(theta3[i])) 
+ 

// (absepsc + sin(theta3[i])*sin(theta3[i])))   ; 

120      fprintfCfwl,   "'/A */,f */.f */.f */.f 7.f \n",   i,  theta3[i] ,  WT[i]); 

} 

125 fclose(fwl); 

} 
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APPENDIX B:   AMBIPOLAR DIFFUSION IN A CROSSED-FIELD DIODE 

We review the problem of ambipolar diffusion in a slab, which is treated in some detail 

in Ref. [24] (see pp 157-163 of the reference). We expand the treatment to allow for the 

application of an applied voltage across the electrode plates containing the plasma. 

The ambipolar diffusion equation comes from considering continuity and momentum 

equations for both ions and electrons in which quasi-neutrality is assumed to hold, that 

is, ne ~ nj. As with the simulations, we assume that collisionality for each plasma species is 

dominated by neutrals, and represented by a constant collision frequency vsn, where s = i 

or e, for ions and electrons, respectively. We also assume constant plasma temperatures. 

If the convective derivative in the momentum equations can be neglected, an Ohm's law 

expression results 

vs = ±^8E-DsV(lnn), (Bl) 

where n is the quasi-neutral plasma density The top(bottom) sign in Eq. (Bl) applies to 

ions(electrons). The mobility of species s is defined as 

tie = ——, (B2) 
m.Van 

where we have assumed Z = 1 for all ions, and the diffusion coefficient is given by 

D, = -^-. (B3) 
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To maintain quasi-neutrality, it is necessary to equate electron and ion fluxes, nv\ = nve. 

From this we obtain the ambipolar electric field 

E = V«V(lnn), (B4) 

where Va has dimensions of voltage, and is given by 

Va = ^—^- (B5) 
A*i + He 

Note that the sign of Va depends on the relative magnitudes of the electron and ion diffusion 

coefficient magnitudes. When Va < 0, electrons are the more "mobile" species and the 

ambipolar held adjusts to slow down the electrons so that their flux remains equal to that 

of the less mobile ions. When Va > 0, the ions are the more mobile species. 

Inserting the common flux into either the ion or electron continuity equation results in a 

diffusion equation with the ambipolar diffusion coefficient 

Da = ^li^. (B6) 

Equations (B2) and (B3) were derived for an unmagnetized plasma. As shown in Ref. [24] 

(pp 169-173), for diffusion perpendicular to the magnetic field the mobility and diffusion 

coefficients for each species are easily modified: 

/'.• 

msVsn 1 + {iocs/usnf' 

T 1 
D, = — K. (B7) 

msvsn 1 + {ujcs/vsny 
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The expressions for the ambipolar voltage Va and diffusion coefficient Da across held lines 

are still given by Eqs. (B5) and (B6), as long as fis and Ds are calculated by Eq. (B7). 

For the parameters in Table I, uce/ven and Vin/uid are both much greater than one. In 

this regime 

\ e ven      e uciJ \uen     ioci 

Da   „   T1 + TL(^e+^nY\ (Bg) 
meu>ce   \ven     LOCI 

Actually, for the parameters in Table I, uce/uen and vin/u>ci only differ by about 25%. In 

this case, using the initial plasma temperatures, we can make the simple approximation 

eVa ~ -Tel2 - 5 eV. Since Va < 0, it follows from Eq. (B5), that De > Du or that the 

electrons are the more mobile of the two species. 

We now look for a solution of the ambipolar diffusion equation in one dimension (d/dy = 

d/dz = 0). We consider the problem of a plasma confined between two conducting plates of 

large extent. Namely a cathode at x = 0, and an anode at x = L. For electrodes with length 

and width comparable to the plate separation L, it is important to consider diffusion both 

parallel and perpendicular to the magnetic held. But we neglect these multi-dimensional 

effects for the present. 

We follow the treatment of Ref. [24] and search for a solution by separation of variables 

n{x,t) = e~t/TS{x). (B9) 
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The diffusion equation is satisfied when S(x) is any linear combination of cos (kx) and 

sin (kx) consistent with the boundary conditions of the problem, where 

k2 = l/(Dar). (BIO) 

Integrating Eq. (B4) from the cathode surface at x — 0 to an arbitrary field point x yields 

the electrostatic potential 

$(x)-*(0) = -Va\n[S(x)/S(0)}. (Bll) 

The applied voltage difference V is given by 

V = $(0)-$(L). (B12) 

We also define the mid-potential VM as the voltage difference between the center and the 

cathode, 

VM = $(L/2) - $(0). (B13) 

If we choose $(L) = 0, VM = $(L/2) - V. From Eqs. (Bll), (B12) we find 

f^e^, (B14) 

where 5^ = 5(0) and SA = S(L). This equation constitutes a boundary condition on the 

solution for S{x). We can also show [Eqs. (Bll) and (B13)] that 

%L = ev»K (B15) 
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where SM = S(L/2). A general solution for S(x) can then be written in the form 

S(x) = SK 
(v/va , i ^ cos [k{x - L/2)\      , V/Va _   , sin [fc(x - L/2)] 
1 j       cosfcL/2       +l j       sinA;L/2 

(B16) 

From Eqs. (B14), (B15), and (B16) we find 

cos (kL/2) = £- (ev/vn + i) = e^fl {ev/v* +1) = ^d, (B17) 

This equation constitutes a general dispersion relation for the wavenumber k. 

We now consider the special case with no applied voltage V = 0. In this case the density 

values at the cathode and anode are equal, SK = SA, and Eq. (B17) reduces to 

cos(kL/2) = ^=eVM/v° (B18) 

Note that a physical solution requires that VM and Va have the opposite sign, and that 

SK < SM, although we expect the density at the electrodes to be much smaller than in the 

middle of the plasma, SK -C SM- 

In Ref. [24], the diffusion equation is solved with the boundary condition SK  = 0. The 

wavenumber k is then obtained from cos (kL/2) = 0. For the lowest order mode kL = n, or 

T=l^) i- (B19) 

with higher modes decaying away on time scales shorter than r. We note that as SK/SM —> 

0, the mid potential VM —* oo. This is clearly not physical, so some small but finite value 

of SK/SM should be retained.   In this case, for the lowest order mode, k < ir/L, which 
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corresponds to a longer time constant than predicted by Eq. (B19). When Va < 0 (electrons 

are held back by the ambipolar held), the potential is concave down at x = L/2. 

We consider somewhat more carefully here what happens when SK = 0. In this case the 

density profile becomes 

S(x) = SM COS [TV(X/L - 1/2)]. (B20) 

We see from Eqs. (Bl) and (B4), that this density profile leads to infinite fluid velocities at 

the cathode and anode surfaces. So near the walls, the diffusion approximation breaks down, 

i.e. it is no longer appropriate to neglect the convective derivative in the fluid momentum 

equations. From Eq. (B4), the ambipolar electric held also becomes infinite at the bound- 

aries. However, the electric held is derived by arguing that quasi-neutrality justifies equating 

electron and ion fluxes. But quasi-neutrality is not maintained near the boundary surfaces. 

The scale-length for the non-neutral region is the plasma Debye length, so the treatment 

given in Ref. [24] gives a good estimate for the density profile when L is much larger than 

the Debye length. The actual physical value of VM/V^ however, depends on the details of 

the non-neutral sheath physics, and cannot be directly calculated from a quasi-neutral fluid 

theory. 

We now consider the case of a non-zero applied voltage V. From Eq. (B16), the plasma 

center-of-mass may be calculated to be 

(X-L/2) .>r--nH»)\w«)„„w,       (B21) 
L 2 \evlv* + l) \sm2{a)J \    a 

where a = kL/2. Note that in the absence of an applied voltage, V/Va —• 0, the plasma 

center-of-mass is exactly in between the two plates, (x) = L/2. For a finite voltage V the 

center-of-mass may shift from the center. Determining the magnitude of the shift, however, 
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requires solving the dispersion relation for a. From Eq. (B17), this requires knowledge 

of the two parameters V/Va and VM/K- For the baseline simulation parameters given in 

Table I, V = 100 V, and Va ~ -5 V, for which ev/Va < 1. In this limit, the first quantity 

in parenthesis on the right hand side of Eq. (B21) is approximately equal to -1, and the 

dispersion relation becomes 

evM/va 

cos(a)~—-—. (B22) 

As mentioned above, the value of the mid potential VM cannot be determined by quasi- 

neutral fluid theory, but depends on the details of the sheath physics. Note that in contrast 

to the case with V = 0, a physical solution does not require VM/K < 0. In this case 

it sufficient that eVM/Va < 2. As VM/Va is decreased from its theoretical maximum of 

+ ln(2), (x — L/2)/L increases monotonically from —0.25, to its asymptotic value of zero 

for VM/VG <C — 1, while a increases monotonically from zero to 7r/2. 

If we estimate that V\i/Va ~ — 1 (SK/SM ~ 0.37), we obtain a ~ 1.39, and 

{X ~ L/2) ~ -0.05, (B23) 

that is, the ion center of mass shifts by 5% towards the cathode. Suppose that for different 

values of electron and ion temperatures and collision frequencies, it occurs that Va > 0, 

but that the magnitude of Va is still much less than V, In this case, the first quantity in 

parenthesis on the right hand side of Eq. (B21) switches from ~ -1 to ~ +1. If we still 

assume that VM/K ~ —1, then the center-of-mass shifts towards the anode side by 5%, 

instead of the cathode side. This demonstrates how the relative signs of V and Va determine 

the direction of plasma shift. In fact, we can state the following general rule: when Va is 

negative (electrons more mobile than ions), the density distribution will skew towards the 
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cathode. When Va is positive (ions more mobile), the distribution skews towards the anode. 

This is regardless of the actual value of VM (provided that it produces a physical result). 

The magnitude of the shift in center-of-mass does of course depend on VM- 

This theory predicts that for times t ~ r, after all higher-order modes have decayed 

away, (x) should be independent of time [a consequence of the ansatz in Eq. (B9)]. This is 

in contrast to the simulation results which show (x) decreasing monotonically with time, even 

for t > T. We must recall that this theory neglects important plasma transport phenomena. 

For example, the assumption of isothermal plasmas neglects Ohmic heating. Since Ohmic 

heating scales as the square of the electric held, we expect heating of the plasma species to 

be greater nearer the electrode where the ambipolar fields are largest. This will introduce a 

temperature profile which is not spatially uniform, which violates one of the key assumptions 

used to derive the simple diffusion equation. In effect, the temperature gradient will cause 

variations in the diffusion coefficient. Nonetheless, this theory does give a qualitative (and 

semi-quantitative) description of the simulation results presented in this report. 
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